25 research outputs found

    STATE LEGAL CONCEPTS XIX - EARLY XX CENTURIES. IN MODERN SCIENTIFIC DISCOURSE THE WORK WAS EXECUTED WITH THE FINANCIAL SUPPORT OF THE RFBR GRANT NO. 17-33-00034 (A1)

    Get PDF
    Abstract: The paper examines the problem of searching for an effective methodology for identifying,systematizing and analyzing state legal concepts of Russian political scientists of the 19th and early 20th centuries. Despite the available studies to date on individual state-legal concepts in the Russian Empire, their comprehensive research, general theoretical analysis and systematization is required, what is possible only if there is a proven methodological basis. The aim of the work is to present the stages and results of the authors' approach to the identification, systematization and evaluation of state-legal concepts in Russia in the 19th and early 20th centuries, which can be used as a basis for conducting similar studies in relation to other sectoral legal exercises. The paper substantiates the algorithm for obtaining systematic knowledge about the entire complex of state-legal concepts of the designated period showing the features of dissertational and monographic studies, the specifics of work with articles in the periodical legal press. The issues on the effectiveness of state-legal exercises are separately touched upon and a mechanism for using the forms of scientific knowledge obtained in the past is proposed to determine the novelty andrelevance of the studies conducted today.Keywords: state-legal concepts, state law science, thesis, monograph, scientific paper, a form of scientificknowledge, the Russian Empire

    African Swine Fever Virus, Siberia, Russia, 2017.

    Get PDF
    African swine fever (ASF) is arguably the most dangerous and emerging swine disease worldwide. ASF is a serious problem for the swine industry. The first case of ASF in Russia was reported in 2007. We report an outbreak of ASF in Siberia, Russia, in 2017

    Risk of survival, establishment and spread of Batrachochytrium salamandrivorans (Bsal) in the EU

    Get PDF
    Batrachochytrium salamandrivorans (Bsal) is an emerging fungal pathogen of salamanders. Despite limited surveillance, Bsal was detected in kept salamanders populations in Belgium, Germany, Spain, the Netherlands and the United Kingdom, and in wild populations in some regions of Belgium, Germany and the Netherlands. According to niche modelling, at least part of the distribution range of every salamander species in Europe overlaps with the climate conditions predicted to be suitable for Bsal. Passive surveillance is considered the most suitable approach for detection of Bsal emergence in wild populations. Demonstration of Bsal absence is considered feasible only in closed populations of kept susceptible species. In the wild, Bsal can spread by both active (e.g. salamanders, anurans) and passive (e.g. birds, water) carriers; it is most likely maintained/spread in infected areas by contacts of salamanders or by interactions with anurans, whereas human activities most likely cause Bsal entry into new areas and populations. In kept amphibians, Bsal contamination via live silent carriers (wild birds and anurans) is considered extremely unlikely. The risk-mitigation measures that were considered the most feasible and effective: (i) for ensuring safer international or intra-EU trade of live salamanders, are: ban or restrictions on salamander imports, hygiene procedures and good practice manuals; (ii) for protecting kept salamanders from Bsal, are: identification and treatment of positive collections; (iii) for on-site protection of wild salamanders, are: preventing translocation of wild amphibians and release/return to the wild of kept/temporarily housed wild salamanders, and setting up contact points/emergency teams for passive surveillance. Combining several risk-mitigation measures improve the overall effectiveness. It is recommended to: introduce a harmonised protocol for Bsal detection throughout the EU; improve data acquisition on salamander abundance and distribution; enhance passive surveillance activities; increase public and professionals’ awareness; condition any movement of captive salamanders on Bsal known health status.info:eu-repo/semantics/publishedVersio

    Research gap analysis on African swine fever

    Get PDF
    The most significant knowledge gaps in the prevention and control of African swine fever (ASF) were identified by the EU Veterinary services and other stakeholders involved in pig production and wild boar management through an online survey. The respondents were asked to identify the major research needs in order to improve short-term ASF risk management. Four major gaps were identified: ‘wild boar’, ‘African swine fever virus (ASFV) survival and transmission’, ‘biosecurity’ and ‘surveillance’. In particular, the respondents stressed the need for better knowledge on wild boar management and surveillance, and improved knowledge on the possible mechanism for spread and persistence of ASF in wild boar populations. They indicated the need for research on ASFV survival and transmission from the environment, different products such as feed and feed materials, and potential arthropod vector transmission. In addition, several research topics on biosecurity were identified as significant knowledge gaps and the need to identify risk factors for ASFV entry into domestic pig holdings, to develop protocols to implement specific and appropriate biosecurity measures, and to improve the knowledge about the domestic pig–wild boar interface. Potential sources of ASFV introduction into unaffected countries need to be better understood by an in-depth analysis of the possible pathways of introduction of ASFV with the focus on food, feed, transport of live wild boars and human movements. Finally, research on communication methods to increase awareness among all players involved in the epidemiology of ASF (including truck drivers, hunters and tourists) and to increase compliance with existing control measures was also a topic mentioned by all stakeholders

    African swine fever in wild boar

    Get PDF
    The European Commission requested EFSA to compare the reliability of wild boar density estimates across the EU and to provide guidance to improve data collection methods. Currently, the only EU-wide available data are hunting data. Their collection methods should be harmonised to be comparable and to improve predictive models for wild boar density. These models could be validated by more precise density data, collected at local level e.g. by camera trapping. Based on practical and theoretical considerations, it is currently not possible to establish wild boar density thresholds that do not allow sustaining African swine fever (ASF). There are many drivers determining if ASF can be sustained or not, including heterogeneous population structures and human-mediated spread and there are still unknowns on the importance of different transmission modes in the epidemiology. Based on extensive literature reviews and observations from affected Member States, the efficacy of different wild boar population reduction and separation methods is evaluated. Different wild boar management strategies at different stages of the epidemic are suggested. Preventive measures to reduce and stabilise wild boar density, before ASF introduction, will be beneficial both in reducing the probability of exposure of the population to ASF and the efforts needed for potential emergency actions (i.e. less carcass removal) if an ASF incursion were to occur. Passive surveillance is the most effective and efficient method of surveillance for early detection of ASF in free areas. Following focal ASF introduction, the wild boar populations should be kept undisturbed for a short period (e.g. hunting ban on all species, leave crops unharvested to provide food and shelter within the affected area) and drastic reduction of the wild boar population may be performed only ahead of the ASF advance front, in the free populations. Following the decline in the epidemic, as demonstrated through passive surveillance, active population management should be reconsidered.info:eu-repo/semantics/publishedVersio

    African swine fever in wild boar

    Get PDF
    The European Commission requested EFSA to compare the reliability of wild boar density estimates across the EU and to provide guidance to improve data collection methods. Currently, the only EU-wide available data are hunting data. Their collection methods should be harmonised to be comparable and to improve predictive models for wild boar density. These models could be validated by more precise density data, collected at local level e.g. by camera trapping. Based on practical and theoretical considerations, it is currently not possible to establish wild boar density thresholds that do not allow sustaining African swine fever (ASF). There are many drivers determining if ASF can be sustained or not, including heterogeneous population structures and human-mediated spread and there are still unknowns on the importance of different transmission modes in the epidemiology. Based on extensive literature reviews and observations from affected Member States, the efficacy of different wild boar population reduction and separation methods is evaluated. Different wild boar management strategies at different stages of the epidemic are suggested. Preventive measures to reduce and stabilise wild boar density, before ASF introduction, will be beneficial both in reducing the probability of exposure of the population to ASF and the efforts needed for potential emergency actions (i.e. less carcass removal) if an ASF incursion were to occur. Passive surveillance is the most effective and efficient method of surveillance for early detection of ASF in free areas. Following focal ASF introduction, the wild boar populations should be kept undisturbed for a short period (e.g. hunting ban on all species, leave crops unharvested to provide food and shelter within the affected area) and drastic reduction of the wild boar population may be performed only ahead of the ASF advance front, in the free populations. Following the decline in the epidemic, as demonstrated through passive surveillance, active population management should be reconsidered.info:eu-repo/semantics/publishedVersio

    Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) No 2016/429): bluetongue

    Get PDF
    A specific concept of strain was developed in order to classify the BTV serotypes ever reported in Europe based on their properties of animal health impact: the genotype, morbidity, mortality, speed of spread, period and geographical area of occurrence were considered as classification parameters. According to this methodology the strain groups identified were (i) the BTV strains belonging to serotypes BTV-1–24, (ii) some strains of serotypes BTV-16 and (iii) small ruminant-adapted strains belonging to serotypes BTV-25, -27, -30. Those strain groups were assessed according to the criteria of the Animal Health Law (AHL), in particular criteria of Article 7, Article 5 on the eligibility of bluetongue to be listed, Article 9 for the categorisation according to disease prevention and control rules as in Annex IV and Article 8 on the list of animal species related to bluetongue. The assessment has been performed following a methodology composed of information collection, expert judgement at individual and collective level. The output is composed of the categorical answer, and for the questions where no consensus was reached, the different supporting views are reported. The strain group BTV (1–24) can be considered eligible to be listed for Union intervention as laid down in Article 5(3) of the AHL, while the strain group BTV-25–30 and BTV-16 cannot. The strain group BTV-1–24 meets the criteria as in Sections 2 and 5 of Annex IV of the AHL, for the application of the disease prevention and control rules referred to in points (b) and (e) of Article 9(1) of the AHL. The animal species that can be considered to be listed for BTV-1–24 according to Article 8(3) are several species of Bovidae, Cervidae and Camelidae as susceptible species; domestic cattle, sheep and red deer as reservoir hosts, midges insect of genus Culicoides spp. as vector species
    corecore